	IBISBA-SOP-WU23
WCSB, Wageningen University	Version 1.0

EPP - Standard Operating Procedure

(only for selected experiments intended to transfer results from one lab to the other)

Title: Acetate kinase protein activity assay

distribution list				
changes to prior version:				
	name	signature	date	
Experimenter 1	Rita Volkers		20/3/2019	

Instruction

Acetate kinase protein activity assay

1. Introduction / Purpose

This protocol describes how to assay the activity of acetate kinase of either cell-free extract or a pure acetate kinase solution. This is what happens during the assay:

```
Acetate + ATP Acetate Kinase > Acetyl Phosphate + ADP
ADP + PEP Pyruvate Kinase > ATP + Pyruvate
Pyruvate + β-NADH Lactic Dehydrogenase > Lactate + β-NAD
```

Keywords: Acetate kinase – assay

2. Equipment and chemicals

2.1. Equipment

• Platereader (spectrophotometer for 96-wells plates)

2.2. Chemicals

- A 100 mM triethanolamine buffer (372g/200ml triethanolamine hydrochloride buffer) Sigma-Aldrich: T1502
- **B** 1 M sodium Acetate solution: Prepare fresh (0.27g/2 ml sodium acetate) Sigma-Aldrich: S2889)
- C 91 mM ATP: Prepare fresh (0.05g/ml ATP) Sigma-Aldrich: A6419
- **D** 56 mM PEP: Prepare fresh (0.03 g/ 2ml PEP) Sigma-Aldrich: 10108294001
- E 200 mM MgCl₂ (2.035 / 50 ml MgCl₂) Sigma-Aldrich: M8266
- **F** 6.4 mM β-NADH: Prepare fresh (0.22g/5ml β-NADH (careful: sticky when wet!)) Sigma-Aldrich: 10107735001
- **G** Pyruvate Kinase (PK)/Lactic Dehydrogenase (LDH) enzyme suspension (Used as provided = 600 1000 u/ml PK/LDH) Sigma-Aldrich: P0294
- **H** Myokinase enzyme suspension (Used as provided = 2000 3000 u/ml myokinase) Sigma-Aldrich: M3003
- I Purified acetate kinase (ackA) or CFE 10x diluted in cold A
- Reaction cocktail: for 10 wells: 1.19 ml A + 400 μ l B + 67 μ l E + 33 μ l F

2.3. Other materials

• Cell Free Extract (CFE) of your cells

Special consumables

• Clear 96-wells plate

3. Procedures

- Dilute your CFE 10 times in a **different** 96wells plate in **A** (this is **I**, also see above) and store at 4°C for easy pipetting/repetition of experiment
- Mix carefully in plate: 169 μl Reagent cocktail + 3 μl G + 1 μl H
- Monitor A_{340nm} until constant @ 25 °C
- When constant: take plate out of platereader and add 13 μ l **C** + 7 μ l **D** + 7 μ l **I** (in blank add A instead of I)
- Mix immediately
- Record decrease of A_{340nm} for 5 minutes

Calculation of enzyme activity

Use a spreadsheet (Excel) to calculate the enzyme activity:

$$\frac{units}{ml} = \frac{\left[\left(\Delta A340nm \ min^{-1}TEST \right) - \left(\Delta A340nm \ min^{-1}Blank \right) \right] * 0.2 * DF}{6.22 * 0.007}$$

0.2 = 200µl reaction volume (total) DF = dilution factor 0.007 = volume of CFE 6.22 = millimolar extinction coefficient of β-NADH @ 340nm

5. Remarks / troubleshooting

- Timing is critical, so perform all platereader steps next to the platereader.
- Perform each row of your 96 wells plate separately to decrease the amount of time required in between pipetting and analysis
- Stabilization of the platereader can take a relatively long time (>30min). Make sure it is completely stabilized.

6. Biosafety

No biosafety issues are associated with this protocol.

7. Acknowledgements

IBISBA (grant agreement No 730976) and EmPowerPutida (grant agreement No 635536) projects have received funding from the European Union's Horizon 2020 research and innovation programme.